Best Practices of Agile Teams

v3.0.5

Today:
Which practices separate great
agile teams from others?

Practicalities

A barely organized list of good and bad things

Not actually a Scrum talk; it's just common.

Clarifying questions welcome!

Who am |

Jakob Buis

Management consultant

Professional team builder

www.jakobbuis.nl (now with blogging!)

Should you listen to me? o

Here you can find the top 50 collectors in the PHP community.

Yes, because:
Netherlands 3+

Netherlands

Never been fired

Unique Total Updated

Herd of 7 elePHPants o 2w

3
months

Worked with 15+ agile teams in various sy =
companies & industries

3
months

Professional Scrum Master I1

1 year

Made with @ by Junior Grossi, Igor Duarte and contributors. Contribute to this project on GitHub.

elephpant.me

http://elephpant.me

Should you listen to me?

Yes, because:
Never been fired
Herd of 7 elePHPants

Worked with 15+ agile teams in various
companies & industries

Professional Scrum Master 11

No, because:
I fuck up, a lot
Worked with 16 teams

Mostly in smaller companies
(< 300 people, < 30 engineers)

Most of my ideas come from other people
(links included!)

Do this Avoid this

Experiment before complete methodology

Daily Scrum on Mon & Wed
Demo work not completed
Retrospective every 3rd sprint

Scrum doesn't work for us

Learn your method

Read the Scrum Guide
Read a book

Take a course

Fixing Your Scrum

Practical Solutions to
Common Scrum Problems

Ryan Ripley
Todd Miller

edited by Dawn Schanafelt

Do this Avoid this

Experiment before complete methodology

Do this Avoid this

Working tested software, every sprint Experiment before complete methodology

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

Twelve Principles of Agile Software

View Signatories

About the Authors
Ahnnit the Manifectn

Principle 1:
Our highest priority is to
satisfy the customer through

early and continuous delivery

of valuable software.

Principle /-

e iS the

primary measure of |1l giaiks,

Stacey Matrix

unknown
complex chaos
Design
Thinking

S

7] Scrum

5

-

I~ complicated

]

ud

Kanban
Waterfall
known

known implementation unknown

SOE-yM TPAM STREPHIL DER-S

Working tested software, every sprint

Get really good at vertical slicing

Start here: https://www.youtube.com/watch?v=urZ1TIycedU

https://www.youtube.com/watch?v=urZ1TIycedU

Working tested software, every sprint

Get really good at vertical slicing

Start here: https://www.youtube.com/watch?v=urZ1TIycedU

Erase all dependencies
- decoupling architecture & operations
- team changes (Team Topologies)
- incur (some) technical debt

https://www.youtube.com/watch?v=urZ1TIycedU

Working tested software, every sprint

Get really good at vertical slicing

Start here: https://www.youtube.com/watch?v=urZ1TIycedU

Erase all dependencies
- decoupling architecture & operations
- team changes (Team Topologies)
- incur (some) technical debt

Avoid big-design up-front

https://www.youtube.com/watch?v=urZ1TIycedU

Do this Avoid this

Working tested software, every sprint Experiment before complete methodology

Do this Avoid this

Working tested software, every sprint Experiment before complete methodology

Know how the product is used

SOE-yM TPAM STREPHIL DER-S

[CREYNOthING SO useless

as doing with great efficiency

that which Siitibiiiealil: at all.

Peter Drucker c§§

Add tracking tables

feature_foo_clicks

id user_id timestamp

1 1 2025-03-10T14:30:10Z
2 2 2025-03-10T14:31:23Z
5 1 2025-03-11T09:16:00Z
4 3 2025-03-12T04:10:59Z

o>
»”.‘ ProKanban.org

Board expansion -

Flow Metrics

1. Options (Backlog) N\ for Scrum teams
2. Discovery A\
3. Building

a. Not started

b. Coding

c. Code Review
d. Ready for release

4. Validating
5. Done

Will Seele & Daniel Vacanti

Do this Avoid this

Working tested software, every sprint Experiment before complete methodology

Know how the product is used

Do this Avoid this

Working tested software, every sprint Experiment before complete methodology

Know how the product is used

Do all work on the board

¢) ey (- - = I

» Aging replay

Aging Chart @ ~/ 7 13Aug 2024 -13 Dec 2024 =
— ‘ .
A car arc) cai ardl r = 13 Dec 2024
wip 8 X B wip Average Age S X B cycle time: 2 days X » Health zones
. 7 S 98%
28 18 work items : 1d 6h 41m & BUOBG > R s e e s

v Selectall

/\ A Label: Cards without labels
/ / j /‘ Start date: 12 Dec 2024 L7 30%

W Open in Trello & 50%
/ H&M\ﬁm./ /\/“W‘«y Sysietimer]dloblm v oo70%

Ready fc elopment: 16

& : . 24 ! g Development: 1h 57m % 85%
Ready ¥
2 v 95%
» Percentiles
» Group by

Filters (18 cards)

Y
@
-

Lists (6/6)

<

Select all

<

Ready for Development

<

Development

s
<

Ready for Code Review

v Code Review

<

Ready for Testing

<

Testing

T
] Cycle time: 2 days

-

Labels (3/3)
1970 EX-7.1
v Selectall
O v Cards without labels
v Can't be Repr

v Ready for Ret

Ready for Developmer dy for v Code Review Ready for Testing Testir

o J2YISY

Do all the work on the board

Create item: [title] + [assigned you] + [in progress]

Consider skipping ticket when:
e doing it right now
e takes <10 minutes (and you're 99% certain)
® s arepeating action (automate it!)

Try a physical board

Bias to having a single board per team.
Items never go back: stuck is preferable.

Do this Avoid this

Working tested software, every sprint Experiment before complete methodology

Know how the product is used

Do all work on the board

Do this Avoid this

Working tested software, every sprint Experiment before complete methodology

Know how the product is used You're not smarter than the customer

Do all work on the board

Do this Avoid this

Working tested software, every sprint Experiment before complete methodology

Know how the product is used You're not smarter than the customer

Do all work on the board

Do this Avoid this

Working tested software, every sprint Experiment before complete methodology

Know how the product is used You're not smarter than the customer

Do all work on the board Estimation

This guy is a software engineer,
you can tell by his awesome
estimation skills

#NoEstimates

After just 3 sprints

Story Points predictive power # of Stories predictive power

The true output: The predicted The true output: The predicted
349,55Ps output: 418 SPs 228 Stories output: 220
Stories

completed completed

C2015 Aken 1. Holub. All rights reserved. htta ./ Molub.com

https://www.youtube.com/watch?v=QVBlnCTu9Ms

Don't estimate

Good:

multi-point estimates

same-sizing everything: "1 story point" and "too big"

https://mdalmijn.com/p/roman-estimation-a-simple-easv-and

Better:

use data

https://mdalmijn.com/p/roman-estimation-a-simple-easy-and

Monte Carlo simulation

Record throughput per day:

o 7 2 6 6 3 7

2

9

1

Monte Carlo simulation

Record throughput per day:
o 7 2 6 6 3 7
Sample next 5 days:

2 0 2 7 O

2

9

1

13

Monte Carlo simulation
Record throughput per day:

o 7 2 6 6 3 7
Sample next 5 days:

2 0 2 7 0 =11

Next week, we'll finish 11 stories

2

9

1

13

nave 2% Development v + ﬂ v Controls

Simulation controls
Monte Carlo: Number of Tasks 01Jun 2018 - 30 Sep 2018 Vv v

Start Date
650 . . . = 15 Sep 2018
End Date
15 Oct 2018

Frequency (Number of trials)

Number of Tasks: 22 ~ e
¢ Frequency: 359 [J Select all
: Probubl]lty 82.89% 0 Todo
Development
Code review
Code review (Done)
Testing
Testing (Done)
Deployment
Done
Labels
Select all
I II Cards without labels
__all B

55 60 Fixed Delivery Date

Number of Tclsks
@ Intangible
Chart

® Standard

Members
I | | Percentiles
11 I | | 1 1 1l I I IIIII I L | I D selectal

04 Jun 1 Jun 18 Jun 25 Jun 02 Jul 09 Jul 16 Jul 23 Jul 30 Jul 06 Aug 13 Aug 20 Aug 27 Aug 03 Sep 10 Sep 17 Sep 24 Sep t O 30%

nave 2% Development v + & O n v Controls

: v Simulation controls
Monte Carlo: Delivery Date 0 01Jun 2018 - 30 Sep 2018 v

Start Date

900 15 Sep 2018

%58

Items to complete

10

Frequency (Number of trials)

: v Lists
. Select all
To do
Date: 03 Oct 2018 Development
:Zﬂ:ﬁty{:;?%% Eedereview
5 Code review (Done)
: Testing
: Testing (Done)
Deployment
2 Done
: Labels
Select all
Cards without labels
. .. ® Expedite
0 — e s

Fixed Delivery Date
18 Sep 20 Sep 22 Sep 24 Sep 26 Sep 28 Sep 30 Sep 02 Oct 04 Oct 06 Oct 08 Oct 10 Oct 12 Oct 14 Oct 16 Oct 18 Oct
¥ ® Intangible

@ Standard

Members

i1 | L | I ||| 1 1l I 11 1l ||| || |||| I || [[isefecal

04 Jun 1 Jun 18 Jun 25 Jun 02 Jul 09 Jul 16 Jul 23 Jul 30 Jul 06 Aug 13 Aug 20 Aug 27 Aug 03 Sep 10 Sep 17 Sep 24 Sep O 30%

50%

Do this Avoid this

Working tested software, every sprint Experiment before complete methodology

Know how the product is used You're not smarter than the customer

Do all work on the board Estimation

Do this

Working tested software, every sprint
Know how the product is used
Do all work on the board

Have a strong Definition of Done

Avoid this

Experiment before complete methodology
You're not smarter than the customer

Estimation

Have a strong Definition of Done

Absolute
Automated

Agreed with PO

Have a strong Definition of Done

Absolute
Automated

Agreed with PO

Do this

Working tested software, every sprint
Know how the product is used
Do all work on the board

Have a strong Definition of Done

Avoid this

Experiment before complete methodology
You're not smarter than the customer

Estimation

Do this

Working tested software, every sprint
Know how the product is used
Do all work on the board

Have a strong Definition of Done

Avoid this

Experiment before complete methodology
You're not smarter than the customer
Estimation

Ineffective retrospectives

Make retrospectives effective

1-2 high priority improvements, implemented next sprint

Make retrospectives effective

1-2 high priority improvements, implemented next sprint

Escalate what you cannot solve

Make retrospectives effective

1-2 high priority improvements, implemented next sprint
Escalate what you cannot solve

Data-driven decision making

Learning
Environment

o1
+sychologic
Safety

Shared
Learning

Stakeholders:
Quality

~ 15

Self-
Management

2 19

Continuous
Improvement

Team Autonomy

Management
Support

columinity.com

Stakeholder
Collaboration

Stakeholder
Concern

Team Effectiveness
52

Responsiveness

Team Morale'

Stakeholder
Satisfaction

Stakeholders:
Team Value

https://columinity.com/

Process Improvement
Dashboard

Flow Metrics & Analytics

Home

Cumulative Flow
Diagram

Cycle Time Scatterplot

Cycle Time Breakdown

Cycle Time Histogram

Aging Chart

Throughput Run Chart

Throughput Hi

Flow Efficiency Chart

Due Date Performance
Chart

Monte Carlo:
ry Date

Monte Carlo:
Number Of Tasks
Executive View

tive Dashboard

Executive Report

Work in Progress &

won @)

Your
Work In Progress
stable ‘ High

10 8 10
tasks tasks | | tasks.

Your WIP is too high! Focus on moving current tasks Q
along, especially the ones that are almost done:

Under Review [DEV] 2222-738
Ready for Review [DEV] 5302-730

Ready for Review [DEV] 9983-283

Work in Progress Age

Your
Total Work In Progress Age
Normal High

Your WIP age s at risk! Consider prioritizing the tasks with Q)
the highest work in progress age to bring your workflow =
back under control

16days [DEV]1232-190

12days [DEV] 3320-827

7 Development (CONWIP: 2 Planned + 1 Unplanned)
ki LlastUpdated by Sonya

CycleTime

STABLE .

Your
Cycle Time

Normal High

24

2 20
days days days

Your cycle time is stable! If you're still looking for
improvement opportunities, consider reviewing the items
with the longest cycle time:

16days [DEV]7382-849
12days [DEV] 6638-839

12days [DEV]2673-098

Cycle Time per Process Step (2

HIGH ‘

Your
Development Cycle Time
Normal High

8
days

Your Development cycle time is too hight Focus on
assessing the issue that caused the delay to bring cycle
time on that status back in line:

16days [DEV] 9892-772

[- =

@ How we calculate your threshold:
Throughput @

Daily Completion Rate
Normal High

Your throughput s too high! Review these tasks to
identify what factors contributed to this boost and assess
if they can be sustained in the long run:

Aug4th [DEV] 8293-283
Aug 4th [DEV] 8983-103

Aug 4th [DEV] 8112-099

Flow Efficiency &

STABLE .
Your

Flow Efficiency

Normal

Your flow efficiency is stable! If you want to further reduce
wait times, consider analyzing the following items with
the lowest flow efficiency and highest cycle time:

16days 23% [DEV]537-009

12days 26% [DEV]346-098

~ Controls for all charts

~ Colors

Issue Type
® Status
Priority

Severity of Impact

~ Cycle time precision

- Filters (70 cards)

~ Statuses (1/4)

@ - Development
@ - Code Review
@ - Testing

® - peployment

~ Priorities (4/4)

v Expedite
v Fixed Date
v Standard

v Intangible

~ sprints (1/4)

Sprint 01 - Launch Prep
V' Sprint 02 - Ul Improvements
Sprint 03 - Bug Fixes

Sprint 04 - UX Updates

https://getnave.com/

Do this

Working tested software, every sprint
Know how the product is used
Do all work on the board

Have a strong Definition of Done

Avoid this

Experiment before complete methodology
You're not smarter than the customer
Estimation

Ineffective retrospectives

Do this

Working tested software, every sprint
Know how the product is used
Do all work on the board

Have a strong Definition of Done

Avoid this

Experiment before complete methodology
You're not smarter than the customer
Estimation

Ineffective retrospectives

Deal with technical debt

CONSIST

2
N

C
<

Prioritize changing files

Prioritize code health issues in the hotspots — a small
part of the total codebase.

Change Frequency

Most of the code is in the long tail, meaning
it’s code that’s rarely worked on. This means
we can accept some technical debt here.

—_—_ m M

20 40 60 80 100 120 140 160 180 200 220 240 260 280
Each File in your Codebase

€—— note: zoomed in

I I I I
1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000

https://www.getunleash.io/blog/manage-technical-debt-measure-the-
impact-and-prioritize-improvements-quided-by-development-data

https://www.getunleash.io/blog/manage-technical-debt-measure-the-impact-and-prioritize-improvements-guided-by-development-data
https://www.getunleash.io/blog/manage-technical-debt-measure-the-impact-and-prioritize-improvements-guided-by-development-data

Do this

Working tested software, every sprint
Know how the product is used
Do all work on the board

Have a strong Definition of Done

Avoid this

Experiment before complete methodology
You're not smarter than the customer
Estimation

Ineffective retrospectives

Deal with technical debt

Do this

Working tested software, every sprint
Know how the product is used

Do all work on the board

Have a strong Definition of Done

Solve business problems

Avoid this

Experiment before complete methodology
You're not smarter than the customer
Estimation

Ineffective retrospectives

Deal with technical debt

@johncutlefish

MANDATE LEVELS

Effort is happening at all of these levels concurrently. It is all connected (explicitly, and often implicitly).

Build exactly this [to a predetermined
e Developers
specification]

Build something that does [specific behavior,
input-output, interaction]

Build something that lets a segment of

customers complete [some task, activity, goal]
.. Developers

. Designer

Solve this [more open-ended
customer problem]

Explore the challenges of, and Improve the Designer

experience for, [segment of users/customers]

Increase/decrease [metric] known to influence
a specific business outcome

Explore various potential leverage points and o« .
run experiments to influence [specific business More rlgld

outcome]

Directly generate [short-term business L . e
ess rigid

outcome]

Generate [long-term business outcome]

https://cutlefish.substack.com/p/tbm-2752-mandate-levels

https://cutlefish.substack.com/p/tbm-2752-mandate-levels

Solve business problems

Don't start here
Working software in the customers hands
Build a prototype

Get users in the room while designing

Do this

Working tested software, every sprint
Know how the product is used

Do all work on the board

Have a strong Definition of Done

Solve business problems

Avoid this

Experiment before complete methodology
You're not smarter than the customer
Estimation

Ineffective retrospectives

Deal with technical debt

To do

Do this

Working tested software, every sprint
Know how the product is used

Do all work on the board

Have a strong Definition of Done

Solve business problems

Avoid this

Experiment before complete methodology
You're not smarter than the customer
Estimation

Ineffective retrospectives

Consistent architecture

How to get started

—
Am
O :
o= 2

“A giant in the field of strategy”—McKinsey Quarterly

The kernel of a strategy
contains three elements:
a diagnosis,
a guiding policy,
and coherent action.

That's all!

Contact, blog & slides @
www.jakobbuis.nl

http://www.jakobbuis.nl

