
Best Practices of Agile Teams
v3.0.5

Today:
Which practices separate great
agile teams from others?

Today:
Which practices separate great
agile teams from others?

Top 5 things the best agile

teams get right, every time!

Bonus: the 5 things
everyone gets wrong!!

Practicalities

A barely organized list of good and bad things

Not actually a Scrum talk; it's just common.

Clarifying questions welcome!

Who am I
Jakob Buis

Developer
Team lead
Engineering Manager
Management consultant

Professional team builder

www.jakobbuis.nl (now with blogging!)

Should you listen to me?
Yes, because:

Never been fired

Herd of 7 elePHPants

Worked with 15+ agile teams in various
companies & industries

Professional Scrum Master II

elephpant.me

http://elephpant.me

Should you listen to me?
No, because:

I fuck up, a lot

Worked with 16 teams

Mostly in smaller companies
(< 300 people, < 30 engineers)

Most of my ideas come from other people
(links included!)

Yes, because:

Never been fired

Herd of 7 elePHPants

Worked with 15+ agile teams in various
companies & industries

Professional Scrum Master II

Do this
Experiment before complete methodology

Avoid this

Daily Scrum on Mon & Wed
Demo work not completed

Retrospective every 3rd sprint

Daily Scrum on Mon & Wed
Demo work not completed

Retrospective every 3rd sprint

Scrum doesn't work for us

Learn your method
Read the Scrum Guide

Read a book

Take a course

Do this
Experiment before complete methodology

Avoid this

Do this
Experiment before complete methodologyWorking tested software, every sprint

Avoid this

Principle 1:
Our highest priority is to
satisfy the customer through
early and continuous delivery
of valuable software.

Principle 7:
Working software is the
primary measure of progress.

Working tested software, every sprint
Get really good at vertical slicing

Start here: https://www.youtube.com/watch?v=urZ1TIycedU

https://www.youtube.com/watch?v=urZ1TIycedU

Working tested software, every sprint
Get really good at vertical slicing

Start here: https://www.youtube.com/watch?v=urZ1TIycedU

Erase all dependencies
- decoupling architecture & operations
- team changes (Team Topologies)
- incur (some) technical debt

https://www.youtube.com/watch?v=urZ1TIycedU

Working tested software, every sprint
Get really good at vertical slicing

Start here: https://www.youtube.com/watch?v=urZ1TIycedU

Erase all dependencies
- decoupling architecture & operations
- team changes (Team Topologies)
- incur (some) technical debt

Avoid big-design up-front

https://www.youtube.com/watch?v=urZ1TIycedU

Do this
Experiment before complete methodologyWorking tested software, every sprint

Avoid this

Do this
Experiment before complete methodologyWorking tested software, every sprint

Know how the product is used

Avoid this

There is nothing so useless
as doing with great efficiency
that which should not be done at all.

Peter Drucker

Add tracking tables

feature_foo_clicks

id user_id timestamp

1 1 2025-03-10T14:30:10Z

2 2 2025-03-10T14:31:23Z

3 1 2025-03-11T09:16:00Z

4 3 2025-03-12T04:10:59Z

1. Options (Backlog)
2. Discovery
3. Building

a. Not started
b. Coding
c. Code Review
d. Ready for release

4. Validating
5. Done

Board expansion

Do this
Experiment before complete methodologyWorking tested software, every sprint

Know how the product is used

Avoid this

Do this
Experiment before complete methodologyWorking tested software, every sprint

Know how the product is used

Do all work on the board

Avoid this

Do all the work on the board
Create item: [title] + [assigned you] + [in progress]

Consider skipping ticket when:
● doing it right now
● takes < 10 minutes (and you're 99% certain)
● is a repeating action (automate it!)

Try a physical board

Bias to having a single board per team.
Items never go back: stuck is preferable.

Do this
Experiment before complete methodologyWorking tested software, every sprint

Know how the product is used

Do all work on the board

Avoid this

Do this
Experiment before complete methodology

You're not smarter than the customer

Working tested software, every sprint

Know how the product is used

Do all work on the board

Avoid this

Do this
Experiment before complete methodology

You're not smarter than the customer

Working tested software, every sprint

Know how the product is used

Do all work on the board

Avoid this

Do this
Experiment before complete methodology

You're not smarter than the customer

Estimation

Working tested software, every sprint

Know how the product is used

Do all work on the board

Avoid this

#NoEstimates

 #NoEstimates (Allen Holub)
https://www.youtube.com/watch?v=QVBlnCTu9Ms

https://www.youtube.com/watch?v=QVBlnCTu9Ms

Don't estimate
Good:

multi-point estimates

same-sizing everything: "1 story point" and "too big"
https://mdalmijn.com/p/roman-estimation-a-simple-easy-and

Better:

use data

https://mdalmijn.com/p/roman-estimation-a-simple-easy-and

Monte Carlo simulation
Record throughput per day:

0 7 2 6 6 3 7 2 9 1 13 0 0 2 4

Monte Carlo simulation
Record throughput per day:

0 7 2 6 6 3 7 2 9 1 13 0 0 2 4

Sample next 5 days:

2 0 2 7 0

Monte Carlo simulation
Record throughput per day:

0 7 2 6 6 3 7 2 9 1 13 0 0 2

Sample next 5 days:

2 0 2 7 0 = 11

Next week, we'll finish 11 stories

Do this
Experiment before complete methodology

You're not smarter than the customer

Estimation

Working tested software, every sprint

Know how the product is used

Do all work on the board

Avoid this

Do this
Experiment before complete methodology

You're not smarter than the customer

Estimation

Working tested software, every sprint

Know how the product is used

Do all work on the board

Have a strong Definition of Done

Avoid this

Have a strong Definition of Done
Absolute

Automated

Agreed with PO

Have a strong Definition of Done
Absolute

Automated

Agreed with PO

Never lie about Done

Do this
Experiment before complete methodology

You're not smarter than the customer

Estimation

Working tested software, every sprint

Know how the product is used

Do all work on the board

Have a strong Definition of Done

Avoid this

Do this
Experiment before complete methodology

You're not smarter than the customer

Estimation

Ineffective retrospectives

Working tested software, every sprint

Know how the product is used

Do all work on the board

Have a strong Definition of Done

Avoid this

Make retrospectives effective
1-2 high priority improvements, implemented next sprint

Make retrospectives effective
1-2 high priority improvements, implemented next sprint

Escalate what you cannot solve

Make retrospectives effective
1-2 high priority improvements, implemented next sprint

Escalate what you cannot solve

Data-driven decision making

columinity.com

https://columinity.com/

getnave.com

https://getnave.com/

Do this
Experiment before complete methodology

You're not smarter than the customer

Estimation

Ineffective retrospectives

Working tested software, every sprint

Know how the product is used

Do all work on the board

Have a strong Definition of Done

Avoid this

Do this
Experiment before complete methodology

You're not smarter than the customer

Estimation

Ineffective retrospectives

Deal with technical debt

Working tested software, every sprint

Know how the product is used

Do all work on the board

Have a strong Definition of Done

Avoid this

Prioritize changing files

https://www.getunleash.io/blog/manage-technical-debt-measure-the-
impact-and-prioritize-improvements-guided-by-development-data

https://www.getunleash.io/blog/manage-technical-debt-measure-the-impact-and-prioritize-improvements-guided-by-development-data
https://www.getunleash.io/blog/manage-technical-debt-measure-the-impact-and-prioritize-improvements-guided-by-development-data

Do this
Experiment before complete methodology

You're not smarter than the customer

Estimation

Ineffective retrospectives

Deal with technical debt

Working tested software, every sprint

Know how the product is used

Do all work on the board

Have a strong Definition of Done

Avoid this

Do this
Experiment before complete methodology

You're not smarter than the customer

Estimation

Ineffective retrospectives

Deal with technical debt

Working tested software, every sprint

Know how the product is used

Do all work on the board

Have a strong Definition of Done

Solve business problems

Avoid this

https://cutlefish.substack.com/p/tbm-2752-mandate-levels

https://cutlefish.substack.com/p/tbm-2752-mandate-levels

Solve business problems
Don't start here

Working software in the customers hands

Build a prototype

Get users in the room while designing

Do this
Experiment before complete methodology

You're not smarter than the customer

Estimation

Ineffective retrospectives

Deal with technical debt

Working tested software, every sprint

Know how the product is used

Do all work on the board

Have a strong Definition of Done

Solve business problems

Avoid this

To do

Do this
Experiment before complete methodology

You're not smarter than the customer

Estimation

Ineffective retrospectives

Consistent architecture

Working tested software, every sprint

Know how the product is used

Do all work on the board

Have a strong Definition of Done

Solve business problems

Avoid this

How to get started

The kernel of a strategy
contains three elements:
 a diagnosis,
 a guiding policy,
 and coherent action.

That's all!
Contact, blog & slides @

www.jakobbuis.nl

http://www.jakobbuis.nl

